

Product Installation Guidelines & Scope of Use

Version 5.1, 30 May 2025, Page 1 of 19 Document No: WM-TMVPMSCSIDE

CliniMix[®] CP-BS Duct Mounted Thermostatic Progressive Shower Mixer with GalvinCare[®] Handle - Electronic

PRODUCT CODES:

- SMVA22 (WM-TMVPMSCSIDE)

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	TECHNICAL DATA	2
3.0	SAFETY	2
4.0	DESCRIPTION	2
5.0	DIMENSIONS	3
6.0	WATER SUPPLY CONDITIONS	3
7.0	APPLICATION	4
8.0	INSTALLATION	4
9.0	OPERATION AND TESTING	6
10.0	COMMISSIONING	7
11.0	ISOLATE INLETS AND CLEAN FILTERS	9
12.0	IN SERVICE TESTING	9
13.0	ADJUSTMENT OF THE MIX TEMPERATURE	11
14.0	REMOVING AND INSPECTING MIXER CARTRIDGE	12
15.0	MAINTENANCE	13
16.0	DISINFECTION	13
17.0	TROUBLESHOOTING	14
18.0	WARRANTY	15

1.0 INTRODUCTION

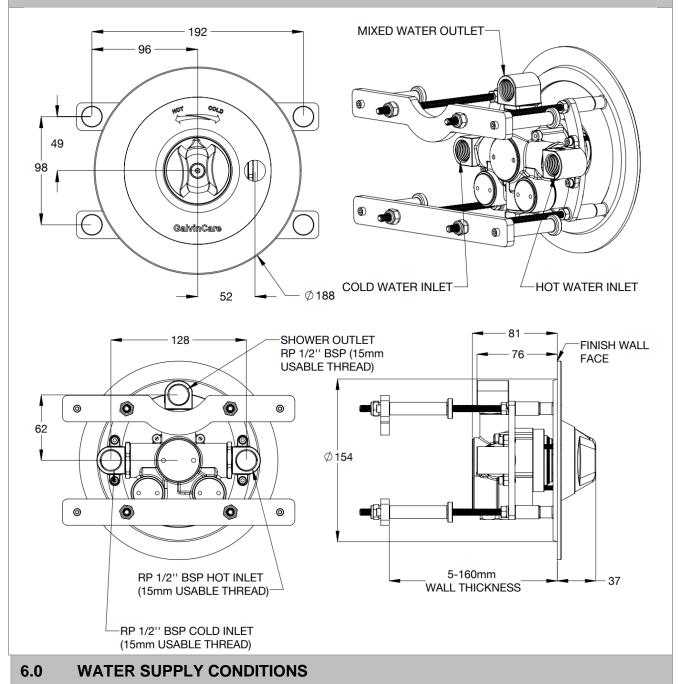
The CliniMix[®] Duct Mounted Thermostatic Progressive Shower Mixer with GalvinCare[®] Handle - Electronic is a high-performance thermostatic mixing valve suitable for a wide range of applications. The mixing valve has the following features:

- This progressive shower mixer provides state of the art features to comply with healthcare requirements.
- Enables water to be mixed closer to the point of discharge, minimising stagnant warm water which provides ideal conditions for legionella bacteria to grow.
- Smooth internal components and body reduces scale build-up and bacteria growth.
- Maximum temperature limiter fitted for protection from accidental scalding.
- Clean smooth lines facilitate fast and easy cleaning.
- All servicing and commissioning can be done without removing the device. Easy access isolators help minimise time spent on commissioning and maintenance.
- Designed to provide stable mixed temperature with rapid shut down in the event of cold or hot water supply failure.
- Approved to: TMV3, Department of Health performance specification D08.

IMPORTANT: All CliniMix[®] Thermostatic Mixers are tested in accordance with Department of Health (DoH) Health technical Memorandum 04-01: Supplement, Performance specification D08: thermostatic mixing valves (healthcare premises). Document to be read in conjunction with CliniMix[®] Progressive Thermostatic Mixing Valve manual.

2.0 **TECHNICAL DATA** Inlet 1/2" BSP - Female Outlet 1/2" BSP - Female Thermostatic mixing Headwork valve Min 0.5 Working Pressure Range (bar) Max 5.0 Min 5 Working Temperature Range (°C) Max 65 DW14GF Type **Check Valves** Size **DN10** Finish Chrome Minimum Wall Cavity Diameter (mm) 160 NOTE: Galvin Specialised continually strive to improve their products. Specifications may change without notice.

Table 1


3.0 SAFETY

The CliniMix[®] Duct Mounted Thermostatic Progressive Shower Mixer with GalvinCare[®] Handle - Electronic is a high-performance valve designed to give stable and dependable operation, provided it is installed, commissioned, operated and maintained as per the recommendations outlined in this manual. It should be noted however that this valve should not be considered as an alternative to adequate supervision and duty of care during its use and operation.

4.0 DESCRIPTION

This manual covers the CliniMix[®] Duct Mounted Thermostatic Progressive Shower Mixer with GalvinCare[®] Handle - Electronic. These are designed to provide water from ambient cold up to a safe maximum temperature for showering. This mixing valve is supplied with integral isolating valves, strainers, check valves, flow regulators located in-body and a facility for thermal disinfection of the cold inlet side and mixed water outlet.

5.0 DIMENSIONS

INTRODUCTION

This CliniMix[®] Duct Mounted Thermostatic Progressive Shower Mixer with GalvinCare Handle - Electronic is manufactured to the highest standards. When installed the supply conditions detailed below must be observed.

SUPPLY PRESSURE REQUIREMENTS

This mixer is designed to be installed on all types of plumbing systems.

Hot and cold water supply pressures should be reasonably balanced; however, the mixer will function within specification on unequal pressures up to 10:1.

The mixer has integral isolating valves which permit servicing of the strainer, check valve/flow regulator and thermostatic cartridge. They are also used for thermal disinfection.

The minimum pressure for the correct thermal operation is 0.2 bar. However, to achieve an acceptable flow performance at very low pressures it may be necessary to remove the combined check valve and flow regulators and replace them with simple check valves.

Hot Temperature Supply Range (°C)	55 - 65
Cold Temperature Supply Range (°C)	5 – 20
Maximum Static Pressure (bar)	10.0
Operating Working Pressure (bar)	0.5 - 5.0
Maximum Outlet Pressure (bar)	5.0
Permitted Supply Pressure Variation	10:1
Min. Temp Differential (Mix to Hot) for Fail-Safe	10°C
Mixed Water Temp. (°C)	41
Minimum Flow Rate for Stable Outlet Temperature	6 LPM
Maximum Thermostatic Temperature (°C)	43°C

Table 2.

7.0 APPLICATION

This thermostatic mixer has been independently tested by NSF and certified as meeting the requirements of the DoH D08 specification under the TMV3 Scheme as being suitable for use on the following:

Code	Application	Range	Mixed Water Temp	
HP-S	Shower	High Pressure	41°C	
Table 3.				

For information on the following:

Isolation valves	Section 11
Backflow prevention	Section 2 & Section 11
Adjusting mixed water temperature	Section 13

8.0 INSTALLATION

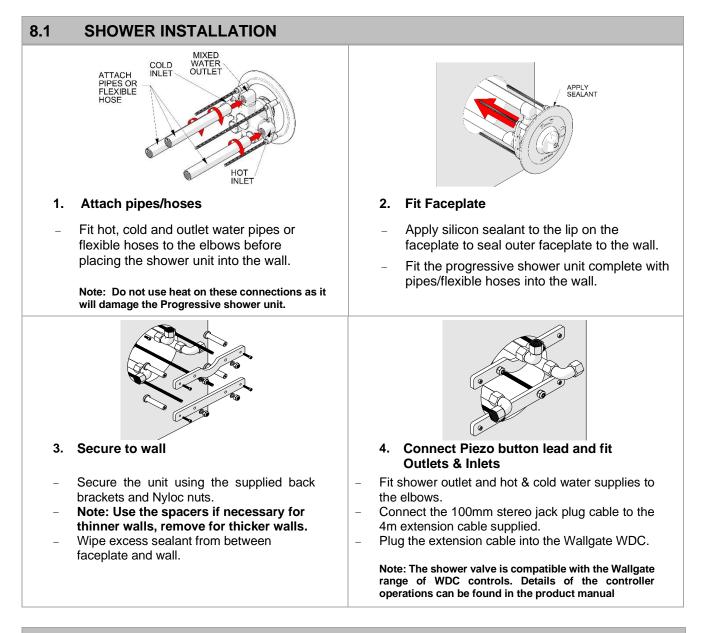
The CliniMix[®] Thermostatic Progressive Mixing Valves must be installed using the appropriate Standard, Code of Practice and legislation applicable to point of install.

The CliniMix[®] Thermostatic Progressive Mixing Valves must be installed by a licensed plumber.

If the valve is not installed correctly then it will not function correctly and may put the user in danger. It may also void the warranty of the valve.

Prior to the installation of the valve, the system must be checked to ensure that the system operating conditions fall within the recommended operating range of the CliniMix[®] Thermostatic Progressive Mixing Valve. If the hot water supply temperature is greater than 65° Celsius, the valve may be damaged. If the temperature of the hot water will rise above 65° Celsius a suitable temperature limiting valve must be fitted to the hot water supply, prior to the inlet fittings. This temperature limiting valve must be installed as per the manufacturer's instructions. It is important that both inlet dynamic supply pressures are 5.0 bar or less. If either supply pressure exceeds 5.0 bar then a suitable pressure reducing valve must be fitted prior to the inlet control valve to reduce the pressure to an acceptable limit.

These pressure reducing valves must be installed as per the manufacturer's instructions. To achieve optimum performance from the valve it is recommended that the inlet pressures are balanced to within 10% of each other.


To ensure that the mixing valve operates correctly, it is necessary that the pipe-work is thoroughly flushed with clean water before the valve is installed. This will remove any physical contaminants from the pipe-work, ensuring trouble-free operation. During the flushing procedure, care should be taken to prevent water damage occurring to the surrounding area.

The valve should be installed so it can be easily accessed for maintenance or servicing.

During installation or servicing, heat must not be applied near the mixing valve or inlet fittings, as this will damage the valve and inlet fittings internals. Failure to comply with this requirement will damage the valve and fittings. It will put the user at risk and it will void the warranty of the valve.

Note: To effectively control microbial hazards during system design, installation, commissioning and maintenance, the requirements of local legislation shall be adhered to.

NOTE: In some installations, certain types of tapware devices such as flick mixers and solenoid valves are used. The water pressure may be seen to spike outside that recommended for the valve, during rapid shut off conditions with these types of devices. Even if the spike only lasts a split second it is still considered to be outside the operating conditions and may cause the valve to operate incorrectly. In the event that this does occur, measures must be taken to control the spike, such as the installation of an inline pressure reducing valve directly before the valve inlets.

9.0 OPERATION AND TESTING

After installation, check for leaks and correct operation.

Note: If handle is hard to turn or rubs, follow step 1 of section 11 to remove the handle and loosen the flange (there is no need to remove the flange or inner faceplate). Re-tighten the flange and handle according to steps 9 and 10 of section 11 to ensure easy to use.

The piezo button is pushed to start water flow.

As the handle is rotated anti-clockwise the delivered water progresses from cold through warm to the pre-set maximum temperature of approximately 41°C.

10.0 COMMISSIONING

Method for Commissioning Thermostatic Mixing Valves

Purpose

Since the installed supply conditions are likely to be different from those applied in the laboratory tests it is appropriate, at commissioning, to carry out some simple checks and tests on each mixing valve to provide a performance reference point for future in-service tests.

Procedure

Check that:

- a. the thermostatic valve is appropriate for the application or designation.
- b. the water supplies are appropriate for the installation and for the designation of the valve
- c. the mixed water temperature is appropriate for the application.

Adjust the temperature of the mixed water in accordance with the manufacturer's instructions and the requirement of the application and then carry out the following sequence:

a. record the temperature of the hot and cold water supplies

record the pressures of the hot and cold water supplies

- b. record the temperature of the mixed water at the maximum available flow
- c. isolate the cold water supply to the mixing valve and observe and record the mixed water outlet

If there is a flow stream after 5 s then collect any water discharging into a suitably graduated measuring vessel for 60 seconds if the volume of water collected is greater than 120ml then further investigation is needed.

If there is no flow or if the volume of water collected is less than or equal to 120ml, then restore the cold water supply, after 15 seconds record the mixed water temperature.

Verify that this temperature does not differ from the temperature taken in **b**) above by 2°C, (this is a restoration test after a failure of the cold water supply and some deviation of the mixed water outlet temperature may be expected).

If the mixed water temperature differs by more than 2°C from the set temperature taken at **b**) above, then recheck the supply conditions or re-commission.

The valve must then be adjusted and re-commissioned in accordance with the manufacturers' instructions.

Note: Consider checking the following:

- the supply conditions for normal use are within the conditions specified in table 2;
- the in-line or integral strainers and check valves are clean;
- any isolating valves are fully open;
- the thermostatic mixing valve installation has been undertaken in accordance with the manufacturer's instructions;
- the temperature differential of the thermostatic mixing valve is appropriate for the supply conditions, in accordance with the manufacturer's instructions;
- the designation of use of the thermostatic mixing valve matches the intended application, table 2;

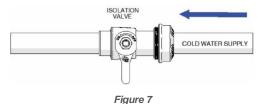
NOTE: The final stabilised mixed water temperature should not exceed the values in Table 4.

 record the equipment, thermometer etc. used for the measureme

Application	Mixed water temperature °C	
Shower	43	
Table 4		

Shut Down Test

Once the correct outlet temperature has been achieved, the valves internal mechanism should be exercised at least 3 times by alternately shutting off the hot and cold supplies while the mixer is set in the full hot position.


Shut Down Test 1

With the mixer still set in the full hot position (handle fully turned anti-clockwise) and with both supplies turned on, allow the mixed water temperature to stabilise for at least 15 seconds and note the outlet temperature. While holding a digital thermometer in the outlet flow, quickly isolate the cold water supply to the valve.

Handle in HOT position

The outlet flow should quickly reduce to be less than 0.75L/min following the isolation. Recording of the temperature should continue after isolation and should not exceed the maximum temperature set out in the applicable standard or code of practice for each state.

Restore the cold-water supply to the valve. After the mixed water temperature has stabilised note the outlet temperature ensuring the outlet temperature has re-established. The time taken to stabilise the temperature should not exceed the maximum time set out in the applicable standard or code of practice for each state.

Shut Down Test 2

With the mixer still set in full hot position and with both supplies turned on allow the flow to stabilise for at

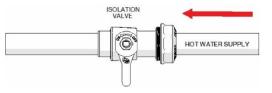
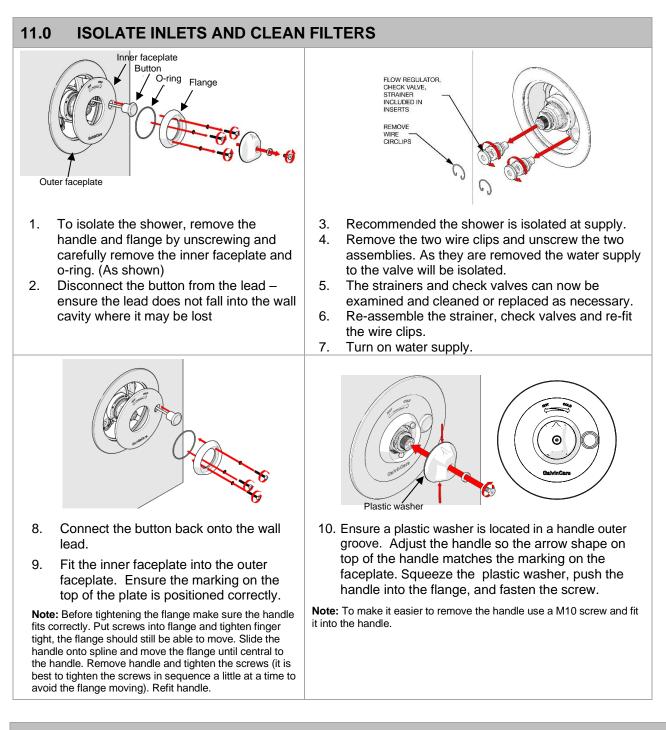


Figure 8


least 15 seconds and record the temperature. Quickly isolate the hot water supply to the valve.

The outlet flow should quickly reduce to be less than 0.75L/min following the isolation. The volume of mixed water discharged for a period of between 5-35 seconds should be measured and should not exceed the maximum volume set out in the applicable standard or code of practice for each state.

Restore the hot water supply to the valve and measure and record the outlet temperature after the mixed water temperature has stabilised. The time taken to stabilise the temperature should not exceed the maximum time set out in the applicable standard or code of practice for each state.

Ensure that all details of the Commissioning Report are completed, and a copy is kept with the installer and owner of the premises.

The valve is now commissioned, and it can be used within the technical limits of operation.

12.0 IN SERVICE TESTING

Purpose

The purpose of in-service testing is to maintain assured performance and to provide records of the thermal performance of the thermostatic mixing valve, consistent with this standard and the risk assessment carried out by the water safety group.

In service test Procedure

Carry out the following In-service test sequence:

a. For all outlets measure and record the temperature of the mixed water at the maximum available flow. If required the mixed water temperature may be readjusted up to a maximum temperature as indicated in table 2.

Note: - After risk assessment a temperature that is lower than the maximum temperature allowable for the designated installation (vulnerable people) can also be set if deemed appropriate to do so.

b. Isolate the cold water supply to the mixing valve and observe the mixed water outlet.

If there is a flow stream after 5 s then collect any water discharging into a suitably graduated measuring vessel for 60 seconds if the volume of water collected is greater than 120ml then recommissioning or service work is needed.

If there is no flow or if the volume of water collected is less than or equal to 120ml, then restore the cold water supply, after 15 seconds record the mixed water temperature.

Verify that this temperature does not differ from the temperature taken in a) above by 2°C (this is a restoration test after a failure of the cold water supply and some deviation of the mixed water outlet temperature may be expected).

If the mixed water temperature differs by more than 2°C from the set temperature taken at a) above, then recheck the supply conditions or re-commission.

The valve must then be re-adjusted and re-commissioned in accordance with the manufacturer's instructions.

NOTE: - In-service tests should be carried out with a frequency which identifies a need for service work before an unsafe water temperature can result. In the absence of any other instruction or guidance the procedure described below may be used

Frequency of in-service testing (informative)

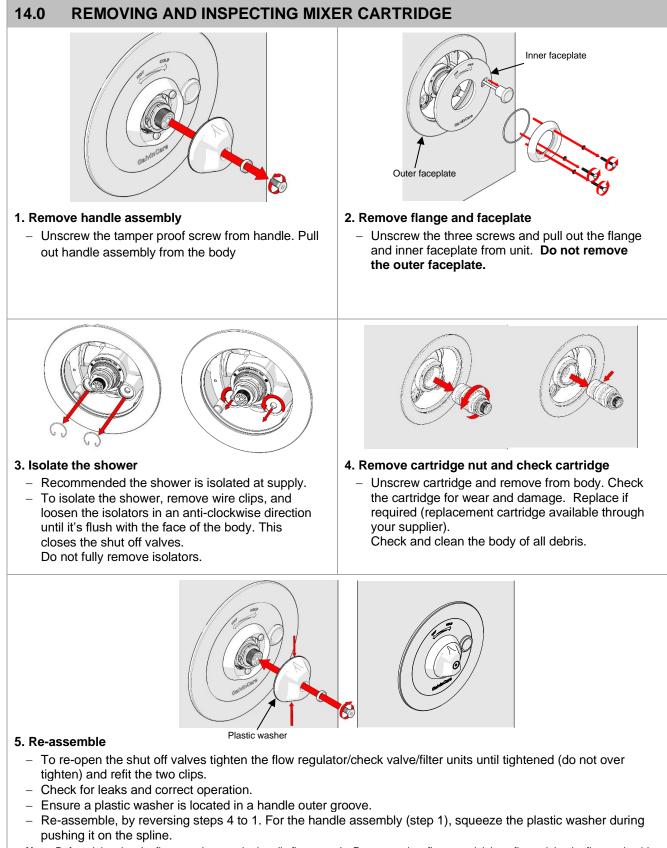
In the absence of any other instruction or guidance on the means of determining the appropriate frequency of in-service testing, the following procedure may be used:

Changes to the mixed water outlet temperature may be attributed to a change in the supply conditions from those experienced at the time of the previous audit(s). The water supplies must be audited (see flowchart Stage 1) to ascertain where remedial action is required i.e. supplies or valve.

6 to 8 weeks after commissioning carry out the 1st post-commissioning test

12 to 15 weeks after commissioning carry out the 2nd post-commissioning test

If there is a difference between the 1st and 2nd post-commissioning tests of less than 2°C, then the next inservice test can be deferred to 24 to 28 weeks after commissioning if there is a difference between the 1st and 2nd post-commissioning tests of greater than 2°C, then the next in-service test should be carried out at 18 to 21 weeks after commissioning.


The general principle to be observed after the first 2 or 3 in-service tests is that the intervals of future tests should be set to those which previous tests have shown can be achieved with no more than a small change in mixed water temperature.

During servicing, note the following:

- 1. Repeat the procedure of recording and checking supply temperatures. (The same type of measuring equipment should be used)
- 2. If the temperature has changed significantly from the previously recorded values, the following should be checked:
 - a. All integral valve filters are clear of obstruction.
 - b. All integral check valves are clean and working properly to prevent backflow.
 - c. Any isolating valves are fully open.
 - d. The thermostat is free of debris.

When satisfied with the mixed outlet temperatures re-record the temperatures.

13.0 ADJUSTMENT OF T	HE MIX TEMPERATURE	
San		Upper brass ring
1. Set the handle to cold position.	 Unscrew the tamper proof screw from handle. Pull out handle assembly from the body.`` 	 Remove the upper brass ring (closure setting ring). Make sure the control rod doesn't rotate during the next steps.
Calvertana	att discase	Plastic washer
4. Remove the lower brass ring (temperature setting ring) and rotate the brass ring clockwise to increase temperature or anti-clockwise to decrease. Refit to spline in new position.	5. Reposition the upper ring in the same position against step.	 Once set, fit the plastic washer in the outer groove of the handle and then reverse step 2. Squeeze the plastic washer to reassemble. Re-test temperature to ensure correct operation.

Note: Before tightening the flange make sure the handle fits correctly. Put screws into flange and tighten finger tight, the flange should still be able to move. Slide the handle onto spline and move the flange until central to the handle. Remove handle and tighten the screws (it is best to tighten the screws in sequence a little at a time to avoid the flange moving). Refit handle.

15.0 MAINTENANCE

Thermostatic Mixing Valves are precision products and as such any maintenance needs to be undertaken in a clean environment and in accordance with the manufacturer's instructions.

The purpose of servicing regularly is to monitor any changes in performance due to changes in either the system or the product. This may highlight the need to adjust either the supply system or the product. These products should be checked at 6 to 8 weeks and again at 12 to 15 weeks after commissioning. The results are to be compared against original commissioning settings.

If there are no significant changes at the mixed temperature outlet then a 6 monthly servicing cycle may be adopted. Otherwise, servicing checks should be carried out more frequently (e.g. every 4 months).

Follow the recommended maintenance procedures detailed in this section.

During servicing, note the following:

- 3. Repeat the procedure of recording and checking supply temperatures. (The same type of measuring equipment should be used)
- 4. If the temperature has changed significantly from the previously recorded values, the following should be checked:
 - e. All integral valve filters are clear of obstruction.
 - f. All integral check valves are clean and working properly to prevent backflow.
 - g. Any isolating valves are fully open.
 - h. The thermostat is free of debris.

When satisfied with the mixed outlet temperatures re-record the temperatures.

16.0 **DISINFECTION**

A disinfection kit is available. For more information please visit <u>www.galvinengineering.com.au</u>.

PROBLEM	CAUSE	RECTIFICATION
The desired mixed water temperature cannot be obtained, or valve is difficult to set.	 Hot and cold supplies are fitted to the wrong connections Thermostatic cartridge contains debris or is damaged Strainers contain debris Non-return devices are damaged 	 Refit the valve with Hot/Cold supplies fitted to the correct connections Clean the Cartridge ensuring that all debris is removed, and components are not damaged. Replace if necessary Clean strainers ensuring debris is removed Check non-return device is not jammed. Clean it if necessary Check for airlocks in the water supply
When the water is set at cold, the blended temperature is too hot	 Hot & Cold water supply connections are installed in reverse. 	 Refit the valve with Hot/Cold supplies fitted to the correct connections
The thermostatic mixing valve will not shut down	 The hot to mix temperature differential is not 10°C or greater Thermostatic cartridge contains debris or is damaged Non-return devices are damaged 	 Raise hot water temperature Clean the cartridge ensuring that all debris is not jammed. Clean if necessary
Mix temperature unstable	 Flow rate below 6L/min Thermostatic cartridge contains debris or is damaged Strainers contain debris Non-return devices are damaged 	 Rectify any pressure deterioration Clean the cartridge ensuring that all debris is removed, and components are not damaged. Replace if necessary Clean strainers ensuring debris is removed Check non-return device is not jammed. Clean if necessary
Mix temperature changing over time	 Inlet conditions (pressure or temperatures) are fluctuating Strainers contain debris 	 Install suitable pressure control valves. Clean strainers ensuring debris is removed
Either full hot or cold flowing from outlet fixture	 The upper temperature ring is incorrectly set Hot/Cold water has migrated to another inlet No flow from Hot and Cold supplies – damaged check valves Refer also to fault/symptom 1 & 2 	 Re-set temperature to between 35-43°C as required Replace faulty check valves
Water is not flowing from outlet	 Hot or cold water failure Thermostatic cartridge contains debris or damage Strainers contain debris 	 Remove aerator and clean then reinstall Restore inlet supplies and check mix temperature Clean the cartridge ensuring that all debris is removed, and components are not damaged. Replace if necessary Clean strainers

17.0 TROUBLESHOOTING

18.0 WARRANTY

Galvin Engineering products are covered under our Manufacturer's Warranty. Galvin Engineering products must be installed in accordance with the installation instructions and in accordance with AS 3500 and NCC Volume Three, relevant Australian Standards and local authorities applicable to product being installed. Water and electrical supply conditions must also comply to the applicable national and/or state standards, failing to comply with these provisions may void the product warranty and affect performance of the product.

Please visit <u>www.galvinengineering.com.au</u> to view the full warranty, our Installation Compliance and Maintenance & Cleaning information as well as any other additional information.

Supplied throughout Europe and the UK by Wallgate Ltd. Crow Lane, Wilton, Salisbury, Wiltshire SP2 0FIB, England P: +44 (0) 1722 744594 F: +44 (0) 1722 742096 E: sales@wallgate.com www.wallgate.com

Galvin Engineering Thermostatic Mixing Valve or Tempering Valve Commissioning Report and/or Maintenance Report

Note:

- 1. Please use a separate form for each valve.
- 2. The original copy of the report is to be given to the owner/occupier and retained on site for a minimum of 7 years.

Tempering Valve Maintenance Report Date: Date: Make & Model of Hot Wat Temperature of ter Pressure:kPa Model No:	ter System: V	he Valve: Size:		
Date: _ Make & Model of Hot Wat Temperature of ter Pressure:kPa Model No:	ter System: V	he Valve: Size:		
Date: _ Make & Model of Hot Wat Temperature of ter Pressure:kPa Model No:	ter System: V	he Valve: Size:		
Date: _ Make & Model of Hot Wat Temperature of ter Pressure:kPa Model No:	ter System: V	he Valve: Size:		
Date: _ Make & Model of Hot Wat Temperature of ter Pressure:kPa Model No:	ter System: V	he Valve: Size:		
Temperature of ter Pressure:kPa Model No:	Cold Water to the	he Valve: Size:		
ter Pressure:kPa Model No:		Size:		
Model No:				
) Basins() Showers()			
	Yes	No		
	Yes	No		
The Local Water Supply or Authority Yes No				
		Yes	Yes No Yes No	

Galvin Engineering Thermostatic Mixing Valve or Tempering Valve Commissioning Report and/or Maintenance Report

Test Results

Valve considered satisfactory for use: Yes

No 🗌

If No, state the reason and action taken:

Commissioning Work

It is hereby certified that all the commissioning work has been carried out by the undersigned in accordance with the requirements of the Codes of Practice indicated prior.

Date of Valve Commissioned:

Name of Licensed Plumber:	License/Cert No:
License Plumbers Signature:	
Telephone No	
Owner/occupiers signature:	Date:
Date of Initial Service Due:	

Galvin Engineering Thermostatic Mixing Valve or Tempering Valve Commissioning Report

Valve Location/Building : _____

Room or Area:

Work Order No.:____

Warm Water	*Name/Type/Size and location	Flow rate of Design Water (LPS)		Temp of Warm Water (C)	
Outlet Fixture No.	of Outlet Fixture (Bath, Shower, Basin, Other)	One Outlet in Use	**All Req'd Outlets in Use	One Outlet in Use	**All Req'd Outlets in Use
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					
11.					

*Give details of brand and model designation.

** Commensurate with the desig	n flow rate for the mixing valve.
--------------------------------	-----------------------------------

Note: An accurate digital thermometer is necessary for the temperature measurements

Prescribed temperature range for warm water _____ C to ____ C

Thermal shutdown at both minimum and maximum design flow rates

(Passed/Failed) Yes □ No □

Name of Plumber: _____

License/Cert No.

Licensee's Signature:

_____ Date: _____ Telephone Number: _____

Within Australia: 1300 514 074 Outside Australia: P: +61 (0)8 9338 2344 F: +61 (0)8 9338 2340 sales@galvinengineering.com.au www.galvinengineering.com.au ABN: 78 008 719 382 PERTH I SYDNEY I MELBOURNE I BRISBANE I ADELAIDE

Galvin Engineering Thermostatic Mixing Valve or Tempering Valve Commissioning/Maintenance Report

The following information is to be	e provided by the site	manager/owner/occupier.		
Valve size and installation recom	mended by :			
Valves supplied by:				
Date of Installation:	e of Installation: Drawing No			
Service Manual on Site:	Yes 🗌	No 🗌		
Commissioning Tests for new ins	stallation or valve repla	acement. Yes 🗌		
This set of testing procedures an	d report received and	witnessed by (Print Name):		
Temperature setting at completion	on of commissioning _	C		
Position:Signature: Date:				
Maintenance Tests. Yes				
Date of Previous Service: Previous Service carried out by:				
Reason for Maintenance Tests:				
This Test and report Witnessed b				
The valve has been operating/pe	Yes 🗌	No 🗌		
Comment on monthly Temperatu	ure Tests carried out b	by the owner:		
Temperature setting at time of co	ompletion:	<u>c</u>		
Current Report received and witr	nessed by:			
Name:		_		
Position:		-		
Signature:		Date:		

Within Australia: 1300 514 074 Outside Australia: P: +61 (0)8 9338 2344 F: +61 (0)8 9338 2340 sales@galvinengineering.com.au www.galvinengineering.com.au ABN: 78 008 719 382 PERTH I SYDNEY I MELBOURNE I BRISBANE I ADELAIDE

